
An Alternative to Pattern Matching, Inspired
by Verse

ROGER BURTONPATEL, Tufts University, USA

Pattern matching appeals to functional programmers for its expressiveness and good cost model,
but it fails to express certain computations without verbosity. Verbosity can be reduced by using
extended forms of pattern matching, but extensions are not standardized, and the most desirable
combination of extensions cannot be found in any one popular programming language. Alter-
natively to pattern matching, computations can be expressed succinctly by using equations, as
has been demonstrated by the Verse programming language. But such computations may have
time and space costs that can be hard to predict. As a compromise, I propose a new language,𝑉 − ,
which uses equations in a limited way that makes time and space costs easy to predict. In com-
parative examples, 𝑉 − expresses computations as succinctly as pattern matching with popular
extensions, and just like pattern matching, it can be compiled to a decision tree.

An implementation of𝑉 − and its compiler can be found at https://github.com/rogerburtonpatel/
vml.

Author’s address: Roger Burtonpatel, roger.burtonpatel@tufts.edu, Tufts University, 419 Boston Ave, Med-
ford, Massachusetts, USA, 02155.

1

https://github.com/rogerburtonpatel/vml
https://github.com/rogerburtonpatel/vml

2 Burtonpatel

Contents

Abstract 1
Contents 2
1 Introduction 4
2 Pattern Matching and its Extensions 5
2.1 Popular extensions to pattern matching 8
3 Equations 16
3.1 VC has a challenging cost model 18
4 A compromise 19
4.1 Two languages of a kind 20
4.2 Introducing 𝑉 − 21
4.3 Programming in 𝑉 − 22
4.4 Formal Semantics of 𝑉 − 24
4.5 Notable rules in the 𝑉 − semantics 26
4.6 Rules (Big-step Operational Semantics) for𝑈 , shared by 𝑉 − and 𝐷 28
4.7 Evaluating general expressions in𝑈 28
4.8 Rules (Big-step Operational Semantics) specific to 𝑉 − 28
5 𝑉 − can be compiled to a decision tree 31
5.1 Introducing 𝐷 31
5.2 𝐷 is a generalization of Maranget’s trees 31
5.3 Rules (Big-step Operational Semantics) for 𝐷 : 33
5.4 The D algorithm: 𝑉 − → 𝐷 35
5.5 Big-step rules for compile 36
5.6 Rules (Big-step Translation) for compiling if-fi 36
5.7 Reduction Strategies 38
5.8 Full Big-step rules for compile, with no descriptions 39
5.9 Translation from 𝑉 − to 𝐷 preserves semantics 40
6 Implementations 40
7 Related and Future Work 40
8 Discussion: The design of 𝑉 − 42
8.1 Forms in VC and 𝑉 − 42

An Alternative to Pattern Matching, Inspired by Verse 3

8.2 Choice in 𝑉 − vs. VC 42
9 Conclusion 43
10 Acknowledgements 43
References 44
A Is 𝑉 − a true subset of VC? 46
B Formal Definitions of all languages 47
B.1 Rules (Big-step Operational Semantics) for𝑈 , shared by 𝑉 − and 𝐷 47
B.2 Evaluating general expressions in𝑈 48
B.3 Rules (Big-step Operational Semantics) specific to 𝑉 − 48
B.4 Rules (Big-step Operational Semantics) for 𝐷 : 51
B.5 Full Big-step rules for compile, with no descriptions 52
B.6 Rules (Big-step Translation) for compiling if-fi 52

4 Burtonpatel

1 INTRODUCTION

Perhaps the most beloved tool among functional programmers for examining and de-
constructing data is pattern matching. Pattern matching is also an established and well-
researched topic [Baudinet and MacQueen 1986; Burton and Cameron 1993; Maranget
2008; Palao Gostanza et al. 1996; Ramsey 2022;Wadler 1987]. It is appreciated by program-
mers and researchers alike for two main reasons: It enables implicit data deconstruction,
and it has a desirable cost model. Specifically (regarding the latter), pattern matching can
be compiled to a decision tree, a data structure that enforces linear runtime performance
by guaranteeing no part of the data will be examined more than once. [Maranget 2008]
However, pattern matching cannot express certain common computations succinctly,

forcing programmerswhowish to express these computations to duplicate code, nest case
expressions, and create multiple points of truth. To mitigate this, designers of popular
programming languages have introduced extensions to pattern matching (Section 2.1).
Extensions strengthen pattern matching, but they are not standardized, so each pop-

ular programming language with pattern matching features its own unique suite of ex-
tensions. Extensions are subject to the discretion of the individual language designer, not
ubiquitous. Rather than continuing to extend pattern matching ad hoc, a worthwhile goal
could be to find an alternative that doesn’t need extensions. A tempting possibility was in-
troduced last year by the programming language Verse [Augustsson et al. 2023]. In Verse,
a programmer can deconstruct data using a different tool the language offers: equations.
Equations are expressive and flexible, and it appears that they can express everything
that pattern matching can, including with popular extensions.
But a full implementation of Verse is complicated, cost-wise. Verse is a functional logic

programming language, and expressions can backtrack at runtime and return multiple
results, both of which are hard to predict in their costs.
In this thesis, I show that the expressive quality of Verse’s equations and the decision-

tree property of patterns can be combined in a single language. Since the language is a
streamlined adaptation of Verse with a reduced feature set, I call it 𝑉 − (“V minus”).
To support this claim, I have formalized𝑉 − with a big-step operational semantics (Sec-

tion 4.2), I have formalized decision trees into a core language 𝐷 (“D”) with a big-step

An Alternative to Pattern Matching, Inspired by Verse 5

operational semantics (Section 5.1), I have formalized a translation from 𝑉 − to 𝐷 (Sec-
tions 5), and I have implemented both languages in Standard ML.

2 PATTERN MATCHING AND ITS EXTENSIONS

In this section, I expand on the definitions, forms, and tradeoffs of patternmatching.These
tradeoffs inform the compromises I make in 𝑉 − (Section 4.2).
Pattern matching lets programmers examine and deconstruct data by matching them

against patterns. When a pattern 𝑝 matches a value 𝑣 , it can produce bindings for sub-
values of 𝑣 . For example, pattern 𝑥 :: 𝑥𝑠 matches any application of the value construc-
tor cons (::), and it binds the first element of the cons cell to 𝑥 and the second to 𝑥𝑠 .
Why use pattern matching? What could programmers use instead? Before pattern

matching was invented, a programmer had to deconstruct data using observers [Liskov
and Guttag 1986]: functions that explicitly examine a piece of data and extract its com-
ponents. Examples of observers in functional programming languages include Scheme’s
null?, car, and cdr, and ML’s null, hd, and tl. Given the option of pattern matching,
however, many functional programmers favor it over observers. I demonstrate with an
example and a claim.
Consider a standard_shape datatype in StandardML,which represents shapes by their

dimensions1:

datatype standard_shape = SQUARE of real

| TRIANGLE of real * real

| TRAPEZOID of real * real * real

I define an area function on standard_shapes, with this type and these algebraic laws:

area : standard_shape -> real

area (SQUARE s) == s * s

area (TRIANGLE (w, h)) == 0.5 * w * h

area (TRAPEZOID (b1, b2, h)) == 0.5 * (b1 + b2) * h

1For sake of simplicity, standard_shapes always have an area that can be obtained by standard area for-
mulas: 1

2 ∗ 𝑏𝑎𝑠𝑒 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 for triangles;
1
2 ∗ (𝑏𝑎𝑠𝑒1 + 𝑏𝑎𝑠𝑒2) ∗ ℎ𝑒𝑖𝑔ℎ𝑡 for trapezoids.

6 Burtonpatel

Now compare two implementations of area, one with observers and one with pattern
matching (Figure 1).

fun observers_area sh =

if isSquare sh

then sqSide sh * sqSide sh

else if isTriangle sh

then 0.5 * triW sh * triH sh

else 0.5 * traB1 sh * traB2 sh * traH sh

(a) area with observers
fun pm_area sh =

case sh

of SQUARE s => s * s

| TRIANGLE (w, h) => 0.5 * w * h

| TRAPEZOID (b1, b2, h) => 0.5 * (b1 + b2) * h

(b) area with pattern matching

Fig. 1. Implementing area using observers is tedious, and the code doesn’t look like the algebraic
laws. Using pattern matching makes an equivalent implementation more appealing.

Implementing the observers isSquare, isTriangle, sqSide, triW, traB1, traB2, and traH
is left as an (excruciating) exercise to the reader.
In general, pattern matching is preferred over observers for five reasons.

A. 1 Lawlike.With pattern matching, code more closely resembles algebraic laws.
2 Single copy. With pattern matching, it’s easier to avoid duplicating code.
3 Exhaustiveness.With patternmatching, a programmer can easily tell if they’ve

covered all cases, and a compiler can verify this through exhaustiveness anal-
ysis.

B. 4 Call-free. Pattern matching does not need function calls to deconstruct data.

An Alternative to Pattern Matching, Inspired by Verse 7

5 Signposting. With pattern matching, important intermediate values are al-
ways given names.

For the rest of the paper. I refer to these as Nice Properties. They are broken into two
groups: Group A, which contains properties of pattern matching that programmers enjoy
in general, and Group B, which contains properties strictly to do with pattern matching’s
specific strengths over observers.
The most important of the Nice Properties are Lawlike and Single copy: they allow pro-

grammers to write code that looks like what they write at the whiteboard, with flexible
laws and minimal duplication. Upholding these two properties is the primary responsi-
bility of extensions to pattern matching (Section 2.1).
Let’s see how each of our Nice Properties holds up in area:
A. 1 Lawlike. pm_area more closely resembles the algebraic laws for area.

2 Single copy. observers_area had to call observers likesquareSide multiple
times, and each observer needs sh as an argument. pm_area was able to ex-
tract the standard_shapes’ internal values with a single pattern, and the
name sh is not duplicated anywhere in its body.

3 Exhaustiveness. If the user adds another value constructor to standard_shape—
say, CIRCLE, the compiler will warn the user of the possibility of a Match ex-
ception in pm_area, and even tell them that theymust add a pattern for CIRCLE
to rule out this possibility. observers_area will not cause the compiler to
complain, and if it’s passed a CIRCLE at runtime, the programwill likely crash!

B. 4 Call-free.Where did isSquare, sqSide, and all the other observers come from?
To even implement observers_area, a programmer has to define awhole new
set of observers for standard_shapes!2 Most programmers find this tiresome
indeed. pm_area did not have to do any of this.

5 Signposting. To extract the internal values, pm_area had to name them, and
their names serve as documentation.

2Sometimes the compiler throws programmers a bone: with some constructed data, i.e., Scheme’s records,
the compiler provides observers automatically. In others, i.e., algebraic datatypes in ML, it does not.

8 Burtonpatel

Having had the chance to compare pattern matching and observers, if you moderately
prefer pattern matching, that’s good: most functional programmers—in fact, most pro-
grammers—likely do as well.
pm_area provides an opportunity to introduce a few terms that are common in pat-

tern matching. pm_area is a classic example of where pattern matching most commonly
occurs: within a case expression. A case expression tests a scrutinee (sh) against a list
of branches. Each branch contains a pattern on the left-hand side (SQUARE s, etc.) and
an expression on the right-hand side (s * s, etc.). When a pattern matches the result
of evaluating the scrutinee, the program evaluates the right-hand side of the respective
branch.3

2.1 Popular extensions to pattern matching

Extensions to pattern matching simplify cases that are otherwise troublesome. Specifi-
cally, extensions help restore Nice Properties Lawlike and Single copy in cases where
pattern matching fails to satisfy them.
In this section, I illustrate several such cases, and I demonstrate how extensions help

programmers write code that adheres to the Nice Properties. The three extensions I de-
scribe are those commonly found in the literature and implemented in compilers: side
conditions, pattern guards, and or-patterns.
To denote pattern matching without extensions, I coin the term bare pattern match-

ing. In bare pattern matching, a pattern has one of two syntactic forms: a name or an
application (of a value constructor to zero or more patterns).

2.1.1 Side conditions. First, I illustrate why programmers want side conditions, an exten-
sion to pattern matching common in most popular functional programming languages,
including OCaml, Erlang, Scala, and Haskell4.

3OCaml, which you’ll see in future sections, calls case match. Some literature [Erwig and Jones 2001] calls
this a head expression. I follow the example of Ramsey [2022] and Maranget [2008] in calling the things
case and scrutinee. Any of these terms does the job.
4I use the term side conditions to refer to a pattern followed by a Boolean expression. Some languages
call this a guard, which I use to describe a different, more powerful extension to pattern matching in Sec-
tion 4.4.3. Haskell has only guards, but a Boolean guard is a side condition.

An Alternative to Pattern Matching, Inspired by Verse 9

I define a (rather silly) function exclaimTall in OCaml on standard_shapes. I have
to translate our standard_shape datatype to OCaml, and while I’m at it, I write the type
and algebraic laws for exclaimTall:
type standard_shape = Square of float

| Triangle of float * float

| Trapezoid of float * float * float

exclaimTall : standard_shape -> string

exclaimTall (Square s) == "Wow! That's a sizeable square!",

where s > 100.0

exclaimTall (Triangle (w, h)) == "Goodness! Towering triangle!",

where h > 100.0

exclaimTall (Trapezoid (b1, b2, h)) == "Zounds! Tremendous trapezoid!",

where h > 100.0

exclaimTall sh == "Your shape is small.",

otherwise

Armed with pattern matching, I implement exclaimTall in OCaml (Figure 2).
Here, I’m using the special variable _—that’s the underscore character, a wildcard

pattern—to indicate that I don’t care about the bindings of a pattern.
I am not thrilled with this code. It gets the job done, but it fails to adhere to the

Nice Properties of Lawlike and Single copy: the code does not look like the algebraic
laws, and it duplicates right-hand side, "Your shape is small", three times. I find the
code unpleasant to read, too: the actual “good” return values of the function, the exclam-
atory strings, are gummed up in the middle of the if-then-else expressions.
Fortunately, this code can be simplified by using the standard_shape patterns with

a side condition, i.e., a syntactic form for “match a pattern and a Boolean condition.”
The when keyword in OCaml provides such a form, as seen in Figure 3.
A side condition streamlines pattern-and-Boolean cases andminimizes overhead, restor-

ing Lawlike and Single copy. And a side condition can exploit bindings that emerge
from the preceding pattern match. For instance, the when clauses in Figure 3 exploit

10 Burtonpatel

let exclaimTall sh =
match sh with

| Square s -> if s > 100.0
then "Wow! That's a sizeable square!"
else "Your shape is small."

| Triangle (_, h) ->
if h > 100.0
then "Goodness! Towering triangle!"
else "Your shape is small."

| Trapezoid (_, _, h) ->
if h > 100.0
then "Zounds! Tremendous trapezoid!"
else "Your shape is small."

Fig. 2. An invented function exclaimTall in OCaml combines pattern matching with an if ex-
pression, and is not very pretty.

let exclaimTall sh =
match sh with

| Square s when s > 100.0 ->
"Wow! That's a sizeable square!"

| Triangle (_, h) when h > 100.0 ->
"Goodness! Towering triangle!"

| Trapezoid (_, _, h) when h > 100.0 ->
"Zounds! Tremendous trapezoid!"

| _ -> "Your shape is small."

Fig. 3. With a side condition, exclaimTall in OCaml becomes simpler and more adherent to the
Nice Properties.

names s and h, which are bound in the match of sh to Square s, Triangle (_, h),
and Trapezoid (_, _, h), respectively.
Importantly, side conditions come at a cost: their inclusion means that a compiler en-

forcing the Exhaustiveness Nice Property becomes an NP-hard problem, because it must
now perform exhaustiveness analysis not only on patterns, but on arbitrary expressions.
Modern compilers give a weaker form of exhaustiveness that only deals with patterns,

An Alternative to Pattern Matching, Inspired by Verse 11

and side conditions are worth the tradeoff for restoring the two most important of the
Nice Properties: Lawlike and Single copy.
A side condition adds an extra “check”—in this case, a Boolean expression—to a pattern.

But side conditions have a limitation: the check can make a decision based off of an
expression evaluating to true or false, but not an expression evaluating to, say, nil or
:: (cons). In the next section, I use an example to showcase when this limitation matters,
and how another extension addresses it.

2.1.2 Pattern guards. To highlight a common use of pattern guards to address such a
limitation, I modify an example from Erwig and Jones [2001], the proposal for pattern
guards in GHC. Suppose I have an OCaml abstract data type of finite maps, with a lookup
operation:

lookup : finitemap -> int -> int option

Let’s say I want to perform three successive lookups, and call a “fail” function if any of
them returns None. Specifically, I want a function with this type and algebraic laws:

tripleLookup : finitemap -> int -> int

tripleLookup rho x == z, where

lookup rho x == Some w

lookup rho w == Some y

lookup rho y == Some z

tripleLookup rho x == handleFailure x, otherwise

handleFailure : int -> int

handleFailure's implementation is unimportant.

handleFailure (x : int) = ... some error-handling ... -> x

12 Burtonpatel

To express this computation succinctly, the program needs to make decisions based
on how successive computations match with patterns, but neither bare pattern matching
nor side conditions give that flexibility.
Side conditions don’t appear to help here, so I try with bare pattern matching. Figure 4

shows how I might implement tripleLookup as such.

let tripleLookup (rho : finitemap) (x : int) =
match lookup rho x with Some w ->

(match lookup rho w with Some y ->
(match lookup rho y with Some z -> z
| _ -> handleFailure x)

| _ -> handleFailure x)
| _ -> handleFailure x

Fig. 4. tripleLookup in OCaml with bare pattern matching breaks the Nice Property of Single
copy: avoiding duplicated code.

Once again, the code works, but it’s lost the Lawlike and Single copy Nice Properties by
duplicating three calls to handleFailure and stuffing the screen full of syntax that dis-
tracts from the algebraic laws. Unfortunately, it’s not obvious how a side condition could
help us here, because we need pattern matching to extract and name internal values w, y,
and z from constructed data.
To restore the Nice Properties, I introduce a more powerful extension to pattern match-

ing: pattern guards, a form of “smart pattern” in which intermediate patterns bind to
expressions within a single branch of a case. Pattern guards can make tripleLookup

appear much simpler, as shown in Figure 5—which, since pattern guards aren’t found in
OCaml, is written in Haskell.
Guards appear as a comma-separated list between the | and the =. Each guard has a

pattern, followed by <-, then an expression. The guard is evaluated by evaluating the
expression and testing if the pattern matches with the result. If it does, the next guard is
evaluated in an environment that includes the bindings introduced by evaluating guards
before it. If the match fails, the program skips evaluating the rest of the branch and falls
through to the next one. As a bonus, a guard can simply be a Boolean expression which

An Alternative to Pattern Matching, Inspired by Verse 13

tripleLookup rho x
| Just w <- lookup rho x
, Just y <- lookup rho w
, Just z <- lookup rho y
= z

tripleLookup _ x = handleFailure x

Fig. 5. Pattern guards swoop in to restore the Nice Properties, and all is right again.

the program tests the same way it would a side condition, so guards subsume side condi-
tions!
If you need further convincing on why programmers want for guards, look no further

than Erwig & Peyton Jones’s Pattern Guards and Transformational Patterns [Erwig and
Jones 2001], the proposal for pattern guards in GHC: the authors show several other
examples where guards drastically simplify otherwise-maddening code.
Pattern guards enable expressions within guards to utilize names bound in preceding

guards, enabling imperative pattern-matched steps with expressive capabilities akin to
Haskell’s do notation. It should come as no surprise that pattern guards are built in to
GHC.

2.1.3 Or-patterns. I conclude our tour of extensions to patternmatchingwith or-patterns,
which are built in to OCaml. Let’s consider a final example. I have a type token which
represents an item or location in a video game and how much fun it is, and I need to
quickly know what game it’s from and how much fun I’d have playing it. To do so, I’m
going to write a function game_of_token in OCaml. HThe token type and the type and
algebraic laws for game_of_token are in Figure 6.
I can write code for game_of_token in OCaml using bare patterns (Figure 7), but I’m

dissatisfied with how it fails the Lawlike and Single copy Nice Properties: it is visually
different from the algebraic laws, and it has many duplicated right-hand sides.
I could try to use a couple of helper functions to reduce clutter, so I do so and come up

with the code in Figure 8. It looks ok, but I’m still hurting for Nice Property Lawlike, and
now I’ve lost the Call-free Property, as well.

14 Burtonpatel

type funlevel = int

type token = BattlePass of funlevel | ChugJug of funlevel | TomatoTown of funlevel
| HuntersMark of funlevel | SawCleaver of funlevel
| MoghLordOfBlood of funlevel | PreatorRykard of funlevel
... other tokens ...

game_of_token : token -> string * funlevel

game_of_token t == ("Fortnite", f), where t is any of
BattlePass f,
ChugJug f, or
TomatoTown f

game_of_token t == ("Bloodborne", 2 * f),
where t is any of

HuntersMark f or
SawCleaver f

game_of_token t == ("Elden Ring", 3 * f),
where t is any of
MoghLordOfBlood f or
PreatorRykard f

game_of_token _ == ("Irrelevant", 0), otherwise

Fig. 6. Type and laws for game_of_token, which make helpful use of ”where.”

let game_of_token token = match token with
| BattlePass f -> ("Fortnite", f)
| ChugJug f -> ("Fortnite", f)
| TomatoTown f -> ("Fortnite", f)
| HuntersMark f -> ("Bloodborne", 2 * f)
| SawCleaver f -> ("Bloodborne", 2 * f)
| MoghLordOfBlood f -> ("Elden Ring", 3 * f)
| PreatorRykard f -> ("Elden Ring", 3 * f)
| _ -> ("Irrelevant", 0)

Fig. 7. game_of_token, with redundant right-hand sides, should raise a red flag.

Once again, an extension comes to the rescue. Or-patterns condense multiple patterns
that share a right-hand side, andwhen any one of the patternsmatches with the scrutinee,

An Alternative to Pattern Matching, Inspired by Verse 15

let fortnite f = ... complicated ... in
let bloodborne f = ... complicated' ... in
let eldenring f = ... complicated'' ... in
match token with
| BattlePass f -> fortnite f
... and so on ...

Fig. 8. game_of_token with helpers is somewhat better, but I’m not satisfied with it.

let game_of_token token = match token with
| BattlePass f | ChugJug f | TomatoTown f -> ("Fortnite", f)
| HuntersMark f | SawCleaver f -> ("Bloodborne", 2 * f)
| MoghLordOfBlood f | PreatorRykard f -> ("Elden Ring", 3 * f)
| _ -> ("Irrelevant", 0)

Fig. 9. Or-patterns condense game_of_token significantly, and it is easier to read line-by-line.

the right-hand side is evaluated with the bindings created by that pattern. I exploit or-
patterns in Figure 9 to restore the Nice Properties and eliminatemuch of the uninteresting
code that appeared in 7 and 8.
In addition to the inherent appeal of brevity, or-patterns serve to concentrate complex-

ity at a single juncture and create single points of truth, restoring the Lawlike and Single
copy properties.

2.1.4 Wrapping up pattern matching and extensions. I have presented three popular ex-
tensions that make pattern matching more expressive and how to use them effectively.
Earlier, though, you might have noticed a problem. Say I face a decision-making problem
that obliges me to use all of these extensions. When picking a language to do so, I am
stuck! No major functional language has all three of these extensions. Remember when
I had to switch from OCaml to Haskell to use guards, and back to OCaml for or-patterns?
The two extensions are mutually exclusive in Haskell and OCaml, and also Scala, Er-
lang/Elixir, Rust, F#, and Agda [Barklund and Virding 1999; Klabnik and Nichols 2023;
Kokke et al. 2020; Leroy et al. 2023; Marlow et al. 2010; Syme et al. 2010; The Elixir Team;
École Polytechnique Fédérale].

16 Burtonpatel

I find the extension story somewhat unsatisfying. At the very least, I want to be able
to use pattern matching, with the extensions I want, in a single language. Or, I want an
alternative that gives me the expressive power of pattern matching with these extensions.

3 EQUATIONS

An intriguing alternative to pattern matching exists in equations, from the Verse Calculus
(VC), a core calculus for the functional logic programming language Verse [Antoy and
Hanus 2010; Augustsson et al. 2023; Hanus 2013]. (For the remainder of this thesis, I use
“VC ” and “Verse” interchangeably.)
VC’s equations test for structural equality and create bindings. Like pattern matching,

equations scrutinize and deconstruct data at runtime by testing for structural equality
and unifying names with values. Unlike pattern matching, VC’s equations can unify
names on both left- and right-hand sides.
Every equation in VC takes the form x = e, where x is a name and e is an expression5.

During runtime, VC relies on a process called unification [Robinson 1965] to attempt
to bind x and any unbound names in e to values. Unification is the process of finding
a substitution that makes two different logical atomic expressions identical. Much like
pattern matching, unification can fail if the runtime attempts to bind incompatible values
or structures (i.e., finds no substitution).
An equation offers a form of binding that looks like a single pattern match. What

about a list of many patterns and right-hand sides, as in a case expression? For this, VC
has choice ().The full semantics of choice are too complex to cover here, but choice, when
combined with the one operator, has a very similar semantics to case; that is, “proceed
and create bindings if any one of these computations succeed.”
Let’s look at what equations, one, and choice look like in VC (Figure 10). I’ve written

the area function in VC extended with a float type and a multiplication operator *.
In the figure, the name vc_area is bound to a lambda (𝜆) that takes a single argu-

ment, sh. The body of the function is a one expression over three choices (separated
by). If any of the choices succeeds, one ensures evaluation of the other choices halts

5To make programmers happy, full Verse allows an equation to take the form 𝑒1 = 𝑒2, which desugars to
∃ 𝑥 .𝑥 = 𝑒1; 𝑥 = 𝑒2, with 𝑥 fresh.

An Alternative to Pattern Matching, Inspired by Verse 17

∃ vc_area. vc_area = 𝜆 sh.

one { ∃ s. sh = ⟨SQUARE , s⟩; s * s

∃ w h. sh = ⟨TRIANGLE , w, h⟩;
0.5 * w * h

∃ b1 b2 h. sh = ⟨TRAPEZOID , b1, b2, h⟩;
0.5 * (b1 + b2) * h}

Laws for area:

area (SQUARE s) == s * s
area (TRIANGLE (w, h)) == 0.5 * w * h
area (TRAPEZOID (b1, b2, h)) == 0.5 * (b1 + b2) * h

Fig. 10. vc_area inVC uses existentials and equations rather than pattern matching. Below are
the algebraic laws for the original area function.

and the succeeding expression’s result is returned. In each branch, the existential ∃ intro-
duces names s, w, h, b1, b2, and is followed by an equation that unifies themwith sh,
along with the familiar value constructors SQUARE, TRIANGLE, and TRAPEZOID. After the
equation is a semicolon followed by an expression, which is evaluated if the equation
succeeds. As in pm_area, the right-hand sides of vc_area are guarded by a “check;” now,
the check is successful unification in an equation rather than a successful match on a
pattern. Similarly, one with a list of choices represents matching on any one pattern to
evaluate a single right-hand side.
Why use equations? I begin with a digestible claim: VC’s equations are preferable to

observer functions.This claimmirrors my argument for pattern matching, and to support
it I appeal to the Nice Properties:

(1) Lawlike. vc_area makes only one addition to the algebraic laws: the explicit ∃.
This makes vc_area look more like mathematical notation than pure algebraic
laws, but that might not be a bad thing: while it less resembles the algebraic laws
a programmer would write, it more resembles the equations that a mathematician
would.

(2) Single copy. vc_area does not duplicate any code.

18 Burtonpatel

(3) Exhaustiveness. By writing the equations that unify shwith the value-constructor
forms first, it is easy in this example to see that the code is exhaustive. Creating
a static analysis tool for VC that ensures exhaustiveness on all expressions may
or may not be a significant challenge; full Verse has a tool that can verify if a
terminating expression on the right-hand side of a function will always succeed or
not [Peyton-Jones 2024].

(4) Call-free. vc_area deconstructs user-defined types as easily as pm_area does with
pattern matching.

(5) Signposting. vc_area has all important internal values named explicitly.

You understand why I claim programmers prefer equations to observer functions. Now
I make a stronger claim: equations are at least as good as pattern matching with popular
extensions. How can I claim this? By appealing again to the Nice Properties! In Section 2,
I demonstrated how pattern matching had to resort to extensions to regain the Properties
when challenging examples stole them away. In Figure 11, I’ve implemented those exam-
ples in VC (this time extended with strings, floats, and *) using choice and equations.
Take a look for yourself!
The code in Figure 11 has all the Nice Properties. This is promising for VC. If it rivals

pattern matching with popular extensions in desirable properties, and VC does every-
thing using only equations and choice, it seems like the language is an intriguing option
for writing code!

3.1 VC has a challenging cost model

So what’s the catch? In VC, names (logical variables) are values, and they can just as
easily be the result of evaluating an expression as an integer or tuple. To bind these
names, VC, like other functional logic languages, relies on unification of its logical vari-
ables and search at runtime to meet a set of program constraints [Antoy and Hanus 2010;
Hanus 2013]. Combining unifying logical variables with search requires backtracking,
which can lead to exponential runtime cost [Clark 1982; Hanus 2013; Wadler 1985].

Pattern matching, by contrast, can be compiled to a decision tree, a data structure that
enforces linear runtime performance by guaranteeing no part of the scrutinee will be
examined more than once [Maranget 2008]. A decision tree does not backtrack: once a

An Alternative to Pattern Matching, Inspired by Verse 19

∃ e x c l a imT a l l . e x c l a imT a l l = 𝜆 sh .
one {

∃ s . sh = ⟨ Square s ⟩ ;
s > 1 0 0 . 0 ; ”Wow! That ’ s a s i z e a b l e squa re !

”
| ∃ w h . sh = ⟨ Tr i ang l e , w, h⟩ ;

h > 1 0 0 . 0 ; ” Goodness ! Towering t r i a n g l e ! ”
| ∃ b1 b2 h . sh = ⟨Trapezo id , b1 , b2 , h⟩ ;

h > 1 0 0 . 0 ; ” Zounds ! Tremendous t r a p e z o i d ! ”
| ” Your shape i s sma l l . ” }

(a) exclaimTall in VC

∃ t r i p l e L ookup . t r i p l e L ookup = 𝜆 rho x .
one { ∃ w. lookup rho x = ⟨ J u s t w⟩ ;

∃ y . lookup rho w = ⟨ J u s t y⟩ ;
∃ z . lookup rho y = ⟨ J u s t z ⟩ ;
z

| h a n d l e F a i l u r e x }

(b) tripleLookup inVC

∃ game_of_token . game_of_token = 𝜆 token .
∃ f . one {

token = one { ⟨ Ba t t l e P a s s , f ⟩ | ⟨ChugJug , f ⟩ | ⟨TomatoTown , f ⟩ } ;
⟨ ” F o r t n i t e ” , f ⟩

| token = one { ⟨HuntersMark , f ⟩ | ⟨ SawCleaver , f ⟩ } ;
⟨ ” B loodborne ” , 2 ∗ f ⟩

| token = one { ⟨MoghLordOfBlood , f ⟩ | ⟨ Prea torRykard , f ⟩ } ;
⟨ ” E lden Ring ” , 3 ∗ f ⟩

| ⟨ ” I r r e l e v a n t ” , 0 ⟩ }

(c) game_of_token in VC

Fig. 11. Code for the 2 functions with equations looks similar, and it doesn’t need extensions.

program makes a decision based on the form of a value, it does not re-test it later with
new information.

4 A COMPROMISE

To bridge the gap between pattern matching, equations, and decision trees, I have created
and implemented a semantics for a new core language: 𝑉 − (“V-minus”).
𝑉 − has equations and choice, like VC, but it does not have multiple results or back-

tracking. To eliminate multiple results, expressions in 𝑉 − evaluate to at most one result,
and choice only guards computation; it is not a valid form of expression. To eliminate
backtracking, the compiler rejects a𝑉 − program that would need to backtrack at runtime.
To provide an efficient and backtracking-free cost model to which 𝑉 − can be compiled,
I introduce a core language of decision trees, 𝐷 , in Section 5.1.

20 Burtonpatel

4.1 Two languages of a kind

In this section, I present𝑉 −. Its semantics appears in Section 4.8, and for reference in Ap-
pendix B. Inmy design, I took inspiration fromVerse:𝑉 − has a conventional sub-language
that is the lambda calculus extended with named value constructors K applied to zero
or more values. I chose named value constructors over VC’s tuples because they look
more like patterns. 𝐷 , the language of decision trees and target of translation from 𝑉 −,
has the same lambda-calculus-plus-value-constructors core, with decision trees substi-
tuted for𝑉 −’s if-fi. Because they share a core, and to facilitate comparisons and proofs, I
present𝑉 − and 𝐷 as two subsets of a single unifying language𝑈 , whose abstract syntax
appears in Table 1. Forms in black are present in both languages, forms in red are specific
to 𝑉 −, and forms in blue are specific to 𝐷 .
As in VC, every lambda-calculus term is valid in 𝑉 − and 𝐷 has the same semantics.

Also like the lambda calculus and VC, 𝑉 − and 𝐷 are strict, meaning every expression is
evaluated when it is bound to a variable. 𝑉 − and 𝐷 are also untyped.
The only form of constructed data in 𝑉 − and 𝐷 is value-constructor application, rep-

resented by the metavariable K. In full languages, other forms of data like numbers and
strings have a similar status to value constructors, but their presence would complicate
the development of semantics and code.
Using just value constructors, though, a programmer can simulate more primitive data

like strings. For example, Wow! That's A Sizeable Square is a valid expression in𝑉 −

and 𝐷 , because it is an application of constructor Wow! to the arguments That's, A, Tall,
and Square, all of which are value constructors themselves. Each name in this “sentence”
is considered a value constructor because it begins with a capital letter. To simulate in-
tegers, a programmer can use Peano numbers, they can use value constructors to im-
plement binary numbers, or they can cheat with singletons: One, Two, etc. Because the
languages all also have lambda, Church Numerals [Church 1985] are another option.
In the subsection below, I discuss 𝑉 − in more detail. I discuss 𝐷 in more detail in Sec-

tion 5.1. In Section 8, I discuss how 𝑉 − relates to VC.

An Alternative to Pattern Matching, Inspired by Verse 21

Syntactic Forms Cases
𝑃 : Programs {𝑑}
𝑑 : Definitions val 𝑥 = 𝑒
𝑣 : Values 𝐾{𝑣 }

𝜆𝑥 . 𝑒

𝑒 : Expressions 𝑣
𝑥,𝑦, 𝑧
𝐾{𝑒}
𝜆𝑥 . 𝑒
𝑒1 𝑒2
if 𝐺 fi
𝑡

𝐺 : Guarded Expressions [∃ 𝑥 .] 𝑔 → 𝑒
𝑔 : Guards 𝑥 = 𝑒

𝑒
𝑔 𝑔 ′

𝑡 : Decision Trees test 𝑥 {𝐾𝑖/𝑦𝑖 ⇒ 𝑡} [𝑒𝑙𝑠𝑒 𝑡]
𝑒
∃ 𝑥 . 𝑡
let 𝑥 = 𝑒 in 𝑡 [; unless fail ⇒ 𝑡]
if 𝑥 === 𝑒 then 𝑡 else 𝑡
fail

Table 1. Abstract Syntax of𝑉 − and 𝐷 . Forms in black are present in both languages, forms in red
are specific to 𝑉 − , and forms in blue are specific to 𝐷 .

4.2 Introducing 𝑉 −

To fuel the pursuit of smarter decision-making, I now draw inspiration from VC. Equa-
tions in VC look attractive, but the cost model of VC is a challenge.
The elements of VC that lead to unpredictable or costly run times are backtracking

and multiple results. So, I begin with a subset of VC, which I call 𝑉 − (”V minus”), with
these elements removed. Removing them strips much of the identity ofVC, but it leaves
its equations to build on top of in an otherwise-typical programming context of single
results and no backtracking at runtime.

22 Burtonpatel

Having stripped out the functional logic programming elements of VC (backtracking
and multiple results), only the decision-making bits are left over. To wrap these, I add a
classic decision-making construct: guarded commands [Dijkstra 1976] The result is 𝑉 −.

Programs 𝑃 F {𝑑} definition
Definitions 𝑑 F val 𝑥 = 𝑒 bind name to expression
Expressions 𝑒 F 𝑣 literal values

| 𝑥,𝑦, 𝑧 names
| if

[
𝐺 {▯ 𝐺}] fi if-fi

| 𝐾 {𝑒} value constructor application
| 𝑒1 𝑒2 function application
| 𝜆𝑥 . 𝑒 lambda declaration

Guarded Expressions 𝐺 F [∃ {𝑥}.] {𝑔} → 𝑒 names, guards, and body
Guards 𝑔 F 𝑒 intermediate expression

| 𝑒1 = 𝑒2 equation
| 𝑔 {;𝑔} 𝑔 {;𝑔} choice

Values 𝑣 F 𝐾{𝑣} value constructor application
| 𝜆𝑥 . 𝑒 lambda value

* Desugars to 𝑥 = 𝑒1; 𝑥 = 𝑒2, 𝑥 fresh.

Fig. 12. 𝑉 − : Concrete syntax

𝑉 − takes several key concepts from VC—namely, equations and choice—with several
key modifications. LikeVC,𝑉 − has equations and choice, but unlike inVC, choice only
guards computations, there are no multiple results, and all decision-making appears in
the if-fi construct, inspired by Dijkstra [Dijkstra 1976].

4.3 Programming in 𝑉 −

Even with multiple modifications, 𝑉 − still allows for many of the same pleasing compu-
tations as full Verse. A programmer can…

(1) Introduce a set of equations, to be solved in a nondeterministic order
(2) Guard expressions with those equations

An Alternative to Pattern Matching, Inspired by Verse 23

(3) Flexibly express “proceed when any of these operations succeeds” with the new
semantics of choice (Section 4.8).

Figure 13 provides an example of how a programmer can utilize𝑉 − to solve the previous
problems (Section 2.1):

v a l e x c l a imT a l l =~ \ sh .
i f E s . sh = Square s ; (> s) 100 −>

Wow! That ’ s A S i z e a b l e Square !
[] E w h . sh = T r i a n g l e w h ; (> h) 100 −>

Goodness ! Towering T r i a n g l e !
[] E b1 b2 h . sh = Trapezo id b1 b2 h ;
(> h) 100 −> Zounds ! Tremendous Trapezo id !

[] −> Your Shape I s Sma l l
f i

(a) exclaimTall in 𝑉 −

v a l t r i p l e L ookup =~ \ rho . ~ \ x .
i f E w y z v1 v2 v3 .

v1 = (lookup rho) x ; v1 = Some w;
v2 = (lookup rho) w; v2 = Some y ;
v3 = (lookup rho) y ; v3 = Some z

−> z
[] −> h a n d l e F a i l u r e x

f i

(b) tripleLookup in 𝑉 −

v a l game_of_token =~ \ t .
i f E f . (t = B a t t l e P a s s f | (t = ChugJug f | t = TomatoTown f)) −>

P (F o r t n i t e f)
[] E f . (t = HuntersMark f | t = SawCleaver f) −>

P (B loodborne ((∗ 2) f))
[] E f . (t = MoghLordOfBlood f | t = P r ea to rRyka rd f) −>

P (E ldenRing ((∗ 3) f))
[] −> P (I r r e l e v a n t 0)
f i

(c) game_of_token in 𝑉 −

Fig. 13. The functions in 𝑉 − have a desirably concise implementation, as before.

𝑉 − looks satisfyingly similar to pattern matching and to VC. The 𝑉 − examples in Fig-
ure 13 have the same number of cases as the pattern-matching examples, and share the
existential and equations with the VC examples in Figure 11.

24 Burtonpatel

𝑉 − Metavariables

𝑒 An expression
𝑣, 𝑣′ A value
fail An expression failure
𝑟 𝑣 | fail : expressions produce results: values or failure.
𝜌 An environment: 𝑛𝑎𝑚𝑒 → V⊥
𝜌{𝑥 ↦→ 𝑦 } An environment extended with name 𝑥 mapping to 𝑦
𝑔 A guard
𝑔 Zero or more guards, separated by ;
𝐺 A guarded expression
𝐺 Zero or more guarded expressions, separated by ▯
𝑒𝑞 An equation
† when solving guards is rejected
𝑠 𝜌 | † : guards produce solutions: a refined environment 𝜌 or rejection
T A context of all temporarily stuck guards (a sequence)

Table 2. 𝑉 − metavariables and their meanings

4.4 Formal Semantics of 𝑉 −

In this section, I present a big-step operational semantics for𝑉 −. The semantics describes
how an expression in𝑉 − is evaluated and how an equation (and more generally, a guard)
works in the language. Instead of a rewrite semantics that makes substitutions within
guards, 𝑉 − has a big-step semantics that directly describes how they are handled by the
runtime core. Figure 12 contains the syntax of 𝑉 −, Figure 2 provides the metavariables
used in the judgement forms and rules of the semantics, and Section 4.8 contains the
forms and rules. Since solving guards is the heart of𝑉 −, I also describe it in plain English.

4.4.1 Expressions. An expression in VC evaluates to produce possibly-empty sequence
of values, where an empty sequence of values is identical to the syntactic form fail. In𝑉 −,
an expression never returns multiple values, but it can fail. Specifically, in𝑉 −, an expres-
sion evaluates to produce a single result. A result is either a single value 𝑣 or fail.

𝑟 ::= 𝑣 | fail

An Alternative to Pattern Matching, Inspired by Verse 25

⟨𝜌, 𝑒⟩ ⇓ 𝑟 (Eval)

4.4.2 Names and refinement of environments. In𝑉 −, like inVC, names can be introduced
with the existential ∃ before they are given a binding. Bindings are given by equations
in guards (4.4.3). When a name is introduced with ∃, it is bound in the environment 𝜌 to
⊥ (pronounced “bottom”). Success of a guard only refines the environment; that is, when
𝜌 ⊢ 𝑔 ↣ 𝜌′, we expect 𝜌 ⊆ 𝜌′. The definition of ⊆ on environments is given below.

𝜌 ⊆ 𝜌′ when dom 𝜌 ⊆ dom 𝜌′

and ∀𝑥 ∈ dom 𝜌 : 𝜌 (𝑥) ⊆ 𝜌′(𝑥)

4.4.3 Guards. For example, the 𝑉 − expression ((\x. x) K) succeeds and returns the
value K. The 𝑉 − expression if fi, the empty if-fi, always fails.
Like VC, 𝑉 − has a nondeterministic semantics. Guards are solved in 𝑉 − similarly to

how equations are solved in Verse: the program nondeterministically picks one out of a
context (T), attempts to solve it, and moves on.
In my semantics, this process occurs over a list of guards 𝑔 in a guarded expression 𝐺 :

the program picks a guard from 𝐺 , attempts to solve it to refine the environment or fail,
and repeats.𝑉 − can only pick a guard out of𝐺 that it knows it can solve. Knowing a guard
can be solved can be determined in 𝑉 − before code is executed. If 𝑉 − can’t pick a guard
and there are guards left over, the semantics gets stuck before code is executed.

𝜌 ⊢ 𝑔 ↣ 𝑠 (Solve-GuaRds)

The environment 𝜌 maps from a name to a value 𝑣 or ⊥. ⊥ means a name has been
introduced with the existential, ∃, but is not yet bound to a value. Given any such 𝜌 ,
a guard 𝑔 eithers refine 𝜌 (𝜌′) or is rejected. We use the metavariable † to represent
rejection, and if any guard in a list is rejected, the entire list of guards is rejected.

𝜌 ⊢ 𝑔 ↣ 𝜌′ (GuaRd-Refine)

𝜌 ⊢ 𝑔 ↣ † (GuaRd-Reject)

26 Burtonpatel

For example, in the 𝑉 − expression if E x. x = K; x = K2 -> x fi, the existen-
tial (in concrete syntax, E) introduces x to 𝜌 bound to ⊥, producing the environment
{𝑥 ↦→ ⊥}. The guard x = K successfully unifies x with K, producing the environment
{𝑥 ↦→ K}. The guard x = K2 attempts to unify K with K2 and is rejected with †.

4.5 Notable rules in the 𝑉 − semantics

Worth discussing in the𝑉 − semantics are those in which a name in 𝜌 is bound to a value
or to ⊥. Notable among these include GuaRd-Name-Exp-Bot, GuaRd-Name-Exp-Eq,
GuaRd-Name-Exp-Fail, GuaRd-Names-Bot-Succ, andGuaRd-Names-Bot-Succ-Rev.This
section discusses each of these rules in short detail. The full set of rules for 𝑉 − is in Sec-
tion 4.8.
In this section, I use the terms known and unknown to denote a name’s status in 𝜌 . If

a name 𝑥 is bound to a value 𝑣 in 𝜌 , then 𝑥 is known. If 𝑥 is bound to ⊥ in 𝜌 , then 𝑥 is
unknown. I use this terminology again when compiling 𝑉 − to 𝐷 , since it describes the
same status in both evaluation in compilation.

(GuaRd-NameExp-Bot)

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = ⊥

𝜌 ⊢ 𝑥 = 𝑒 ↣ 𝜌{𝑥 ↦→ 𝑣}
When 𝜌 (𝑥) = ⊥ (𝑥 is unknown) and ⟨𝜌, 𝑒⟩ ⇓ 𝑟 , the program refines 𝜌 by making a

binding of 𝑥 to 𝑣 . Here, = is treated like a let-binding in ML-like languages.

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣′

𝑣 ≠ 𝑣′

𝜌 ⊢ 𝑥 = 𝑒 ↣ †
(GuaRd-NameExp-Fail)

When 𝜌 (𝑥) = 𝑣 (𝑥 is known) and ⟨𝜌, 𝑒⟩ ⇓ 𝑟 , the program proceeds without refining the
environment, since no new information is gained. Here, = is treated like a == in C-like
languages.

An Alternative to Pattern Matching, Inspired by Verse 27

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣′

𝑣 ≠ 𝑣′

𝜌 ⊢ 𝑥 = 𝑒 ↣ †
(GuaRd-NameExp-Fail)

When 𝜌 (𝑥) = 𝑣′ (𝑥 is known) and ⟨𝜌, 𝑒⟩ ⇓ 𝑟 and 𝑣 ≠ 𝑣′, unification fails, so the guarded
expression fails. Here, = is treated like a == in C-like languages.

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣, 𝜌 (𝑦) = ⊥

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑦 ↦→ 𝑣}
(GuaRd-Names-Bot-Succ)

When 𝜌 (𝑥) = 𝑣 (𝑥 is known) and 𝑟ℎ𝑜 (𝑦) = ⊥ (𝑦 is unknown), the program can always
bind 𝑦 to 𝑣 . Here, = is treated like a let-binding in ML-like languages.

(GuaRd-Names-Bot-Succ-Rev)

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = ⊥, 𝜌 (𝑦) = 𝑣

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑥 ↦→ 𝑣}
This rule is simply an application of GuaRd-Names-Bot-Succ in reverse.

28 Burtonpatel

4.6 Rules (Big-step Operational Semantics) for𝑈 , shared by 𝑉 − and 𝐷

4.6.1 Judgement forms for 𝑈 . In both 𝑉 − and 𝐷 , an expression evaluates to produce a
single result. A result is either a single value 𝑣 or fail.

⟨𝜌, 𝑒⟩ ⇓ 𝑟 (Eval)

4.7 Evaluating general expressions in𝑈

Here, I show all the rules which are shared by 𝑉 − and 𝐷 under𝑈 .

(Eval-Vcon)
⟨𝜌, 𝑒𝑖⟩ ⇓ 𝑣𝑖 1 ≤ 𝑖 ≤ 𝑛

⟨𝜌, 𝐾 (𝑒1, . . . 𝑒𝑛)⟩ ⇓ 𝐾 (𝑣1, . . . 𝑣𝑖)

∃𝑒𝑖 . 1 ≤ 𝑖 ≤ 𝑛 : ⟨𝜌, 𝑒𝑖⟩ ⇓ fail

⟨𝜌, 𝐾 (𝑒1, . . . 𝑒𝑛)⟩ ⇓ fail
(Eval-Vcon-Fail)

(Eval-Name)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣

⟨𝜌, 𝑥⟩ ⇓ 𝑣 ⟨𝜌, 𝜆𝑥 .𝑒⟩ ⇓ L𝜆𝑥 .𝑒, 𝜌M (Eval-LambdaDecl)

(Eval-Funapp)

⟨𝜌, 𝑒1⟩ ⇓ L𝜆𝑥.𝑒, 𝜌′M
⟨𝜌, 𝑒2⟩ ⇓ 𝑣

⟨(𝜌 + 𝜌′){𝑥 ↦→ 𝑣}, 𝑒⟩ ⇓ 𝑟

⟨𝜌, 𝑒1 𝑒2⟩ ⇓ 𝑟

⟨𝜌, 𝑒1⟩ ⇓ L𝜆𝑥.𝑒, 𝜌′M
⟨𝜌, 𝑒2⟩ ⇓ fail

⟨𝜌, 𝑒1 𝑒2⟩ ⇓ fail
(Eval-Funapp-Fail)

(Eval-LiteRal)
⟨𝜌, 𝑣⟩ ⇓ 𝑣

4.8 Rules (Big-step Operational Semantics) specific to 𝑉 −

These judgement forms and rules are specific to 𝑉 −.

4.8.1 Judgement forms for 𝑉 −.

𝜌 ⊢ 𝑔 ↣ 𝜌′ (GuaRd-Refine)

𝜌 ⊢ 𝑔 ↣ † (GuaRd-Reject)

An Alternative to Pattern Matching, Inspired by Verse 29

4.8.2 Choosing and solving a guard.

(Solve-GuaRd-Refine)
𝜌 ⊢ 𝑔 ↣ 𝜌′ 𝜌′ ⊢ 𝑔 · 𝑔 ′ ↣ 𝑠

𝜌 ⊢ 𝑔 · 𝑔 · 𝑔 ′ ↣ 𝑠

(Solve-GuaRd-Reject)
𝜌 ⊢ 𝑔 ↣ †

𝜌 ⊢ 𝑔 · 𝑔 · 𝑔 ′ ↣ †

4.8.3 Properties of guards.

(Multi-GuaRd-Commut)
𝜌 ⊢ 𝑔 · 𝑔1 · 𝑔2 · 𝑔 ′ ↣ 𝑠

𝜌 ⊢ 𝑔 · 𝑔2 · 𝑔1 · 𝑔 ′ ↣ 𝑠

4.8.4 Desugaring of Complex Equations.

(DesugaR-EqExps)

𝑥 fresh
𝜌{𝑥 ↦→ ⊥};T ⊢ 𝑔 ⇓ 𝑠

𝜌 ⊢ 𝑔 · 𝑒1 = 𝑒2 · 𝑔 ′ ↣ 𝑠

4.8.5 Refinement with different types of guards.

(GuaRd-NameExp-Bot)

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = ⊥

𝜌 ⊢ 𝑥 = 𝑒 ↣ 𝜌{𝑥 ↦→ 𝑣}
(GuaRd-NameExp-Eq)

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣

𝜌 ⊢ 𝑥 = 𝑒 ↣ 𝜌

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣′

𝑣 ≠ 𝑣′

𝜌 ⊢ 𝑥 = 𝑒 ↣ †
(GuaRd-NameExp-Fail)

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣, 𝜌 (𝑦) = ⊥

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑦 ↦→ 𝑣}
(GuaRd-Names-Bot-Succ)

(GuaRd-Names-Bot-Succ-Rev)

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = ⊥, 𝜌 (𝑦) = 𝑣

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑥 ↦→ 𝑣}

30 Burtonpatel

(GuaRd-Vcon-Succ)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝐾 𝑣1, . . . 𝑣𝑛

𝜌 ⊢ 𝑦1 = 𝑒1; · · · · · 𝑦𝑛 = 𝑒𝑛 ↣ 𝑠, where
𝑦𝑖 fresh, 𝜌 (𝑦𝑖) = 𝑣𝑖 1 ≤ 𝑖 ≤ 𝑛

𝜌 ⊢ 𝑥 = 𝐾 𝑒1 . . . 𝑒𝑛 ↣ 𝑠

(GuaRd-Vcon-Fail)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣
𝑣 does not have the form 𝐾 [𝑣′1, . . . 𝑣′𝑛]

𝜌 ⊢ 𝑥 = 𝐾 𝑒1, . . . 𝑒𝑛 ↣ †

(GuaRd-Expseq-Succ)
⟨𝜌, 𝑒⟩ ⇓ 𝑣

𝜌 ⊢ 𝑒 ↣ 𝜌

⟨𝜌, 𝑒⟩ ⇓ fail

𝜌 ⊢ 𝑒 ↣ †
(GuaRd-Expseq-Fail)

(GuaRd-Choice-FiRst)
𝜌 ⊢ 𝑔 ↣ 𝜌′

𝜌 ⊢ 𝑔 𝑔′ ↣ 𝜌′
(GuaRd-Choice-Second)

𝜌 ⊢ 𝑔 ↣ † 𝜌 ⊢ 𝑔′ ↣ 𝑠

𝜌 ⊢ 𝑔 𝑔′ ↣ 𝑠

4.8.6 Evaluating if-fi.

(Eval-IfFi-Fail)
⟨𝜌, if fi⟩ ⇓ fail

𝜌′ = 𝜌{𝑥1 ↦→ ⊥ . . . 𝑥𝑛 ↦→ ⊥}
𝜌′ ⊢ 𝑔 ↣ 𝜌′′

⟨𝜌′′, 𝑒⟩ ⇓ 𝑟

⟨𝜌, if ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒 ▯;𝐺 fi⟩ ⇓ 𝑟
(Eval-IfFi-Success)

(Eval-IfFi-Reject)

𝜌′ = 𝜌{𝑥1 ↦→ ⊥ . . . 𝑥𝑛 ↦→ ⊥}
𝜌′ ⊢ 𝑔 ↣ †

⟨𝜌, if 𝐺 fi⟩ ⇓ 𝑟

⟨𝜌, if ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒 ▯ 𝐺 fi⟩ ⇓ 𝑟

An Alternative to Pattern Matching, Inspired by Verse 31

5 𝑉 − CAN BE COMPILED TO A DECISION TREE

5.1 Introducing 𝐷

While 𝑉 − exists for writing programs, 𝐷 exists as the target of translation and provides
a means by which to demonstrate𝑉 −’s efficient cost model. This is because the decision-
making construct itself in 𝐷 , the decision tree, has an efficient cost model. A decision
tree can implement either pattern matching or if-fi while guaranteeing never to repeat
a test. The worst-case cost of evaluating a decision tree is linear in its depth, which itself
linear in the size of the code. This desirable property of decision trees is half of a space-
time tradeoff: when a decision tree is produced by compiling a case expression, there
are pathological cases in which the total size of the tree is exponential in the size of the
source code (from case). Run time remains linear, but code size may not be.
Although decision trees are classically used as an intermediate representation for com-

piling case expressions, in this work, I use them as a target for compiling if-fi in 𝑉 −. In
particular, I show that equations in 𝑉 − can be compiled to a decision tree.
𝐷 is a generalization of the trees found in Maranget [2008].

5.2 𝐷 is a generalization of Maranget’s trees

𝐷’s syntax is given in Figure 16. Decision trees in𝐷 are engineered to look likeMaranget’s
trees.
The heart of a decision tree is the test form: it takes a value, examines it, and chooses a

branch based on its form (Maranget calls the operation Switch).
Let’s look at an example from Maranget [2008] which shows the structure of a simple

pattern-matching function and its corresponding decision tree. I show Maranget’s exam-
ple for two reasons: First, the example serves to bolster your understanding of decision
trees with a classic, well-established model. Second, since I currently have no visualiza-
tion generator for 𝐷 (𝐷 can currently only be visualized as plain text), I use Maranget’s
example to have a reasonable visual representation of decision trees. The example beings
with the function, merge, which merges two lists:

32 Burtonpatel

Fig. 14. The skeleton of Maranget’s merge

The function is compiled to this decision tree:

Fig. 15. The final compiled decision tree for merge, right-to-left

The decision tree for merge, like the original function, tests values and makes decisions.
When presented with the values xs and ys, the tree first tests xs against its two known
possible forms: the nullary list constructor [], and an application of the cons construc-
tor ::. If xs is equal to [], the tree immediately returns ys. If xs is an application of ::,
the tree then tests ys against [] and ::, and it returns a value according to the result of
the match. Each time the tree goes down a :: branch, it extracts the arguments of the ::
for later use: these are x, y, xr, and yr, which are used in the ... branch. This process of
extracting arguments generalizes to all value constructors with one or more arguments.
In 𝐷 , as in Maranget’s trees, the test node extracts all names from a value constructor

at once for use in subtrees. The compiler is responsible for introducing the fresh names
used in test. The compiler alpha-renames all necessary terms before it translates an if-fi
to a decision tree to ensure all names are unique.
In 𝐷 , like in 𝑉 −, expressions can fail, meaning some of 𝐷’s syntactic forms like try-let

and cmp have an extra branch which is executed if the examined expression fails.

An Alternative to Pattern Matching, Inspired by Verse 33

Programs 𝑃 F {𝑑} definition
Definitions 𝑑 F val 𝑥 = 𝑒 bind name to expression
Expressions 𝑒 F 𝑣 literal values

| 𝑥,𝑦, 𝑧 names
| 𝑡 decision tree
| 𝐾 {𝑒} value constructor application
| 𝑒1 𝑒2 function application
| 𝜆𝑥. 𝑒 lambda declaration

Decision Trees 𝑡 F test 𝑥 {𝐾{𝑦} ⇒ 𝑡}[else 𝑡] test node
| let 𝑥 = 𝑒 in 𝑡 [unless fail => 𝑡] let-unless node
| if 𝑥 = 𝑒 then 𝑡 else 𝑡 comparison node
| ∃ 𝑥 . 𝑡 exists node
| fail fail node

Values 𝑣 F 𝐾{𝑣} value constructor application
| 𝜆𝑥. 𝑒 lambda value

Fig. 16. 𝐷 : Concrete syntax

5.3 Rules (Big-step Operational Semantics) for 𝐷:

5.3.1 Evaluating Decision Trees.

(Eval-Test-Fail)
𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, []) ⇓ fail

(Eval-Test-Succeed)

𝜌 (𝑥) = 𝐾 𝑣 𝑙𝑒𝑛 𝑣 = 𝑖

𝜌 ⊢ 𝑡 ⇓ 𝑟

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, (𝐾 𝑦, 𝑡) · 𝑡𝑠) ⇓ 𝑟

(Eval-Test-RecuRse)

𝜌 (𝑥) = 𝑣
𝑣 does not have the form 𝐾 𝑣 s.t. 𝑙𝑒𝑛 𝑣 = 𝑙𝑒𝑛 𝑦

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, 𝑡𝑠), 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟 ⇓ 𝑟

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, (𝐾 𝑦, 𝑡) · 𝑡𝑠) ⇓ 𝑟

34 Burtonpatel

(If-FiRst)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌 (𝑥) = 𝑣
𝜌 ⊢ 𝑡1 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

(If-Second)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌 (𝑥) ≠ 𝑣
𝜌 ⊢ 𝑡2 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

(If-Unless)

𝜌 ⊢ 𝑒 ⇓ fail
𝜌 ⊢ 𝑡3 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

(Let-Succeed)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌{𝑥 ↦→ 𝑣} ⊢ 𝑡1 ⇓ 𝑟

𝜌 ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2 ⇓ 𝑟

(Let-Unless)

𝜌 ⊢ 𝑒 ⇓ fail
𝜌 ⊢ 𝑡2 ⇓ 𝑟

𝜌 ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2 ⇓ 𝑟

(Fail)
𝜌 ⊢ fail ⇓ fail

(Exists)
𝜌{𝑥 ↦→ ⊥} ⊢ 𝑡 ⇓ 𝑟

𝜌 ⊢ ∃ 𝑥 . 𝑡 ⇓ 𝑟

An Alternative to Pattern Matching, Inspired by Verse 35

5.4 The D algorithm: 𝑉 − → 𝐷

To demonstrate that𝑉 − has a similarly-desirable costmodel to patternmatching, I present
an algorithm for compiling 𝑉 − to a decision tree. I choose the decision tree as a target
for compilation for the simple reason of its appealing cost model. A decision tree can
be exponential in size but never examines any word of the scrutinee—the value being
tested—more than once. This property is established by the compilation from 𝑉 − to 𝐷 ,
which ensuring that no test node T has any proper ancestor T’ such that T and T’ both
test the same location in memory.
There are a fewminor differences in the algorithm I use andMaranget’s: his compilation

algorithm is more complex than the one in this paper, and involves an intermediate rep-
resentation of occurrence vectors and clause matrices which the algorithm I present does
not use. Maranget uses vectors and matrices to express multiple simultaneous matches of
values to patterns as a single match of a vector with a matrix row. This allows him to run
a specialization pass that reduces the number of rows in the matrix, ultimately leading to
smaller trees. Because the trees produced by my algorithm still have the linear-in-code-
size property, I find them acceptable for the current work.
The algorithm runs during D, the transformation from𝑉 − to 𝐷 . Its domain, instead of

a case expression, is𝑉 −’s if-fi. D propagates a context C which maps each defined name
to known or unknown. The context is used when determining the form of a guard.
When presented with an if-fi,D ĩnvokes compilewith context C. compile first desugars

the if-fi by expanding choice to multiple if-fi branches with a desugaring function I:
I[[𝑖 𝑓 . . . ▯ 𝑔𝑠1; 𝑔𝑠2 𝑔𝑠3; 𝑔𝑠4 → 𝑒 ▯ . . . 𝑓 𝑖]]
==
𝑖 𝑓 . . . ▯ 𝑔𝑠1; 𝑔𝑠2 → 𝑒 ▯ 𝑔𝑠3; 𝑔𝑠4 → 𝑒 ▯ . . . 𝑓 𝑖

With the desugared if-fi, compile then repeatedly chooses a guarded expression𝐺 and
applies one of the compilation rules below. The rules are applied in a nondeterministic
order.
The algorithm terminateswhen it inserts a finalmatch node (with ruleMatch). Amatch

node is inserted for a right-hand side expression 𝑒 when the list of guards preceding 𝑒
is empty or a list of assignments from names to unbound names. Termination of D ĩs
guaranteed because each recursive call passes a list of guarded expressions in which the

36 Burtonpatel

number of guards is strictly smaller, so eventually the algorithm reaches a state in which
the first unmatched branch is all trivially-satisfied guards.
If compile cannot choose a 𝑔 of one of the valid forms, it halts with an error. This can

happen when no 𝑔 is currently solvable in the context, as determined by the same algo-
rithm that 𝑉 − uses to pick a guard to solve, or when the program would be forced to
unify incompatible values, such as any value with a closure.

5.5 Big-step rules for compile

The judgement form for the compiler is:

C ⊢ if 𝐺 fi ↩→→ 𝑒 (Compile)

5.6 Rules (Big-step Translation) for compiling if-fi

The rules are nondeterministic: the structure of the final result 𝑒 depends on the order in
which rules are applied by the compiler.

(Exists)
C{𝑥1 ↦→ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} ⊢ if 𝐺 ▯ ∃ . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

If the compiler finds one or more names introduced by ∃, it strips a name from the ∃
list and adds it to Cas unknown. This is the rule that grows the context with new names,
along with lambda, which introduces its argument as known.

(Fail)
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; fail; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

If the compiler finds a guarded expression𝐺 which contains fail, it stops compiling𝐺
altogether.

(Match)
C ⊢ if 𝐺 ▯ → 𝑒 ▯ 𝐺 ′ fi ↩→→ 𝑒

If the compiler finds an ungarded right-hand side expression 𝑒 , it inserts a match node
containing 𝑒 .

An Alternative to Pattern Matching, Inspired by Verse 37

(Test)

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛
C + {𝑦𝑖 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒

[
𝐾𝑖 𝑦𝑖/𝑥

]
↩→→ 𝑒𝑖

𝑡 =
∑
𝑖

𝐾𝑖 𝑦𝑖 ⇒ 𝑒𝑖

𝑒0 = 𝑒 [𝐾0/𝑥] 𝐾0 does not appear in 𝑒

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑡𝑒𝑠𝑡 (𝑥, 𝑡 , 𝑒0)

If the compiler finds a known name 𝑥 equated to the application of a value construc-
tor K, it assembles a set of branches that correspond to varying value constructors. The
only requirement of the set is that it contain K. With substiution of

[
𝐾𝑖𝑦𝑖/𝑥

]
, the com-

piler ensures that 𝑥 will never be tested again, and also allows for rules Elim-Vcon
and Expand-Vcon to make progress.

(Elim-Vcon)

𝑒′ does not have the form 𝐾 𝑒′[1] . . . 𝑒′[𝑛]
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝑒′ = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

If the compiler finds two equated expressions where one is an application of a value
constructor to 𝑛 arguments and the other isn’t, the compiler skips over that branch, like
in Fail.

C ⊢ if 𝐺 ▯ 𝑔; 𝑒1 = 𝑒1′; . . . ; 𝑒𝑛 = 𝑒𝑛′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝐾 𝑒1 . . . 𝑒𝑛 = 𝐾 𝑒1
′ . . . 𝑒𝑛

′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒
(Expand-Vcon)

If the compiler finds two equated expressions where each is an application of a value
constructor to 𝑛 arguments, the compiler expands the single equation into a list of equa-
tions between the arguments. This rule takes advante of 𝑉 −’s sugared equation form
𝑒1 = 𝑒2, which desugars to 𝑥 = 𝑒1 · 𝑥 = 𝑒2, with 𝑥 fresh.

𝜌 (𝑥) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒 : 𝑘𝑛𝑜𝑤𝑛

C + {𝑥 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒′ [𝑥/𝑒] ↩→→ 𝑡1

C ⊢ 𝑒′ [fail/𝑒] ↩→→ 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2
(Let-Unless)

38 Burtonpatel

If the compiler finds an opportunity to bind a name to an expression 𝑒 , it creates a let-
unless node and substitutes 𝑥 for all instances of 𝑒 , making 𝑥 known in the new context.
In the unless fail branch, fail is substituted for 𝑒 so that Fail can eliminate guarded
expressions containing it.

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒′ : 𝑘𝑛𝑜𝑤𝑛

C ⊢ 𝑒
[
𝑥/𝑒′

]
↩→→ 𝑡1

C + {𝑦 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒
[
fail/𝑥 = 𝑒′

] [
𝑦/𝑒′

]
↩→→ 𝑡2 𝑦 fresh

C ⊢ 𝑒
[
fail/𝑒′

]
↩→→ 𝑡3

𝑡𝑖 𝑓 = 𝑖 𝑓 𝑥 = 𝑦 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑦 = 𝑒′ 𝑖𝑛 𝑡𝑖 𝑓 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3
(Let-If)

If the compiler finds a known name being compared to 𝑒 , it creates an if node within
a let-unless node, binding a fresh name 𝑦 to 𝑒 and using it for substitution to ensure 𝑒 is
never evaluated again. Like in Let-Unless, in the unless fail branch, fail is substituted
for 𝑒 so that Fail can eliminate guarded expressions containing it.

5.7 Reduction Strategies

In my implementation, I apply the Test rule before other rules, having found in my
experiments that this heuristic leads to the smallest trees. A risk of inserting a test node
before a let-unless node is that if there aremany shared names across branches, a test node
will introduce those names in let-unless nodes in each subtree. It is possible to insert let-
unless nodes before test nodes, in which case those names will be bound only once. The
risk of the let-first strategy is that if there are many names used in only one subtree
of a test, these names will be introduced to all branches. The extra bindings may harm
performance by bloating an environment in an interpreter or thrashing the icache if the
tree further is compiled to machine code.
In the implementation, D f̃irst introduces all the names under the all existential ∃’s to

a context which determines if a name is known or unknown, applying the Exists rule is
applied all at the start. At the start of compilation, each name introduced by ∃ is unknown
in a context C. Since all names in the program are unique at this stage, there are no
clashes.

An Alternative to Pattern Matching, Inspired by Verse 39

5.8 Full Big-step rules for compile, with no descriptions

The judgement form for compilation is Compile:

C ⊢ if 𝐺 fi ↩→→ 𝑒 (Compile)

The rules are nondeterministic: the structure of the final result 𝑒 depends on the order
in which rules are applied by the compiler.

(Exists)
C{𝑥1 ↦→ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} ⊢ if 𝐺 ▯ ∃ . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

(Fail)
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; fail; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

(Match)
C ⊢ if 𝐺 ▯ → 𝑒 ▯ 𝐺 ′ fi ↩→→ 𝑒

(Test)

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛
C + {𝑦𝑖 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒

[
𝐾𝑖 𝑦𝑖/𝑥

]
↩→→ 𝑒𝑖

𝑡 =
∑
𝑖

𝐾𝑖 𝑦𝑖 ⇒ 𝑒𝑖

𝑒0 = 𝑒 [𝐾0/𝑥] 𝐾0 does not appear in 𝑒

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑡𝑒𝑠𝑡 (𝑥, 𝑡 , 𝑒0)

(Elim-Vcon)

𝑒′ does not have the form 𝐾 𝑒′[1] . . . 𝑒′[𝑛]
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝑒′ = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝑒1 = 𝑒1′; . . . ; 𝑒𝑛 = 𝑒𝑛′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝐾 𝑒1 . . . 𝑒𝑛 = 𝐾 𝑒1
′ . . . 𝑒𝑛

′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒
(Expand-Vcon)

40 Burtonpatel

𝜌 (𝑥) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒 : 𝑘𝑛𝑜𝑤𝑛

C + {𝑥 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒′ [𝑥/𝑒] ↩→→ 𝑡1

C ⊢ 𝑒′ [fail/𝑒] ↩→→ 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2
(Let-Unless)

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒′ : 𝑘𝑛𝑜𝑤𝑛

C ⊢ 𝑒
[
𝑥/𝑒′

]
↩→→ 𝑡1

C + {𝑦 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒
[
fail/𝑥 = 𝑒′

] [
𝑦/𝑒′

]
↩→→ 𝑡2 𝑦 fresh

C ⊢ 𝑒
[
fail/𝑒′

]
↩→→ 𝑡3

𝑡𝑖 𝑓 = 𝑖 𝑓 𝑥 = 𝑦 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑦 = 𝑒′ 𝑖𝑛 𝑡𝑖 𝑓 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3
(Let-If)

5.9 Translation from 𝑉 − to 𝐷 preserves semantics

Translating if-fi to a decision tree should preserve semantics:

ConjectuRe 5.1. Given a specific but arbitrarily chosen environment 𝜌 and context C, when
⟨𝜌, 𝑒⟩ ⇓ 𝑟1 and C ⊢ 𝑒 ↩→→ 𝑒′ and ⟨𝜌, 𝑒′⟩ ⇓ 𝑟2, then 𝑟1 = 𝑟2.

Proving this conjecture is the subject of future work.

6 IMPLEMENTATIONS

I have placed implementations of 𝑉 − and 𝐷 at https://github.com/rogerburtonpatel/vml.
The implementations are complete, from parsers to evaluation to unparsers. In the same
repository lives the dtran program, which translates from 𝑉 − to 𝐷 . With the implemen-
tations, I include test cases for evaluation of 𝑉 −, evaluation of 𝐷 , and the translation
between the two. In each of these test cases, the translation preserves semantics.

7 RELATED AND FUTURE WORK

This paper builds on Augustsson et al.’s Verse Calculus [Augustsson et al. 2023] and de-
cision trees [Maranget 2008]. Augustsson et al. give the formal rewrite semantics for the

https://github.com/rogerburtonpatel/vml

An Alternative to Pattern Matching, Inspired by Verse 41

Verse Calculus; Maranget gives an elegant formalism of decision trees and a translation al-
gorithm from patterns to decision trees. I attempted to imitate the behavior of the rewrite
semantics of VC in the big-step semantics of 𝑉 − by manually rewriting terms in VC
and creating rules that would imitate the ultimate result of term-rewriting. Proving the
equivalence between the two semantics is the subject of future work. I chose a big-step
semantics because it is the style of semantics I am most comfortable with; writing the
formalisms this way helped me write the code. Using a rewrite semantics instead would
more closely relate𝑉 − andVC, and is a likely future project. Maranget’s formalism was
the foundation off of which I built 𝐷 .
Extensions to pattern matching, and how they appeal to language designers, find an

excellent example in Erwig and Jones [2001]. The authors describe pattern guards and
transformational patterns (another extension to pattern matching), both of which allow
a Haskell programmer to write more concise code using pattern matching. Or-patterns
are documented in the OCaml Language Reference Manual [Leroy et al. 2023].
Augustsson [1985] gives a foundation in compiling pattern matching. Scott and Ram-

sey [2000] have a crisp example of a match-compilation algorithm (pattern matching to
decision trees). Scott and Ramsey’s algorithm structurally inspired mine, and studying
the source code from the paper aided my implementation.
For future work, my top priority is to prove that D preserves semantics. Next, I plan

to prove that 𝑉 − is deterministic, and that the big-step semantics of 𝑉 − is consis-
tent with the published semantics of VC. As the authors of the Verse paper proved
that the rewrite semantics of Verse is skew-confluent, I plan to prove that big-step se-
mantics of𝑉 − is deterministic, despite the nondeterminism of choosing a guard. Second,
𝑉 − is designed to be Verse-like, and formalizing the relationship between the two would
strengthen𝑉 −’s viability as a language that compromises between pattern matching and
equations.
Finally, I would like to explore exhaustiveness analysis of𝑉 −. Exhaustiveness analysis

canwarn programmers of amissing or extraneous alternative in a case expression. Owing
to its significantly more flexible structure, however, if-fi may prove trickier to analyze.

42 Burtonpatel

8 DISCUSSION: THE DESIGN OF 𝑉 −

This section is aimed at audience familiar with VC; in particular, with the concept of
names as values.

8.1 Forms in VC and 𝑉 −

When designing 𝑉 −, I wanted the language to capture the expressiveness of VC’s equa-
tions while retaining a similar decision-making construct to pattern matching. In pattern
matching, the only decision-making construct is case; other forms of decision-making
like if desugar to it. In 𝑉 −, the only decision-making construct is if-fi. This design dif-
fers from VC, which features numerous ways to make decisions by combining one, all,
equations, intermediate expressions, and choice. I did not want multiple results in𝑉 −, so
I eliminated anything that looked like all, and I combined all of the above constructs into
the singular form if-fi. Like case, there is only one way to use if-fi- unlike one, equations,
intermediate expressions, and choice in VC. By restricting all decision-making to if-fi,
programmers cannot “misuse” any of the forms in ways that might lead to problematic
computations, such asmultiple results by returning choice as an expression. Furthermore,
as I’ve shown in the examples, the way in which programmers use if-fi mirrors the way
they use case.

8.2 Choice in 𝑉 − vs. VC

VC’s choice operator is often the culprit behind both backtracking and multiple results,
which tempted me to remove choice from 𝑉 − altogether. However, I want to harness
the expressive potential of choice, particularly when paired with VC’s one keyword.
When combined with choice, one elegantly signifies “proceed if any branch of the choice
succeeds.”
To this end, in 𝑉 −, choice is permitted with several modifications:

(1) Choice may only appear as a condition or ’guard’, not as a result or the right-hand
side of a binding.

(2) If any branch of the choice succeeds, the choice succeeds, producing any bindings
found in that branch. The program examines the branches in a left-to-right order.

(3) The existential ∃ may not appear under choice.

An Alternative to Pattern Matching, Inspired by Verse 43

I introduce one more crucial modification to VC: a name in 𝑉 − is an expression, not
a value. This modification, coupled with my adjustments to choice, eradicates backtrack-
ing. My rationale is straightforward: if an expression returns a name, and if the program
later imposes a new constraint on that name, it may necessitate the reevaluation of the
earlier expression—a scenario I insist on avoiding.

9 CONCLUSION

I have introduced 𝑉 −, a language that makes decisions using equations. By example,
I have shown that programs written in 𝑉 − can have the same desirable properties as
equivalent programs written using pattern matching. And to show that equations can be
compiled to efficient decision trees, I have introduced𝐷 andD. In doing so, I have demon-
strated that programming with equations is a promising alternative to pattern matching.
I have also fully implemented the languages. They exist for use and experimentation:

they are syntactically simple and have conceptually accessible operational semantics.
I hope that programmers will explore and develop their own opinions of these languages,
which are publically available at https://github.com/rogerburtonpatel/vml.

10 ACKNOWLEDGEMENTS

This thesis would not have been possible without the infinitely generous time and support
of my advisors, Norman Ramsey and Milod Kazerounian. Norman’s offhand comment of
“I wonder if Verse’s equations subsume pattern matching” was the entire basis of this
work, and his generosity in agreeing to advise a full thesis to answer his question will
always be profoundly appreciated. During the academic year, Norman provided me with
materials on both the technical story and on how to write about it well. He gave me reg-
ular feedback and has helped improve my research skills, my technical writing, and my
understanding of programming languages in general tremendously. I especially appreci-
ate how he has guided me in-person at the end of my undergrad when his book [Ramsey
2022] got me started down the path of PL at the beginning of it. Finally, Norman is also
fantastically fun to pair program with.
From the beginning, Milod provided me with encouraging mentorship that kept me en-

thusiastic and determined to complete the project. He was exceptionally patient as I gave
him whirlwind tour after whirlwind tour of the changing codebase and problems, and he

https://github.com/rogerburtonpatel/vml

44 Burtonpatel

kept me grounded in the problems at hand. He sent me helpful examples of his research
to aid me in my proofs, and gave me some particularly encouraging words towards the
end of the project that I will not soon forget.
My undergraduate advisor, Mark Sheldon, has always been both supportive and kind.

I have enjoyed many long talks in his office, and I am deeply grateful that he is on my
committee.
Alva Couch was the advisor of my original thesis idea, which was to compile program-

ming languages with music. Ultimately, we decided that I should pursue this project
instead, and I am grateful to him for his mentorship in that moment and onwards.
My family—mymother, Jennifer Burton, my father, Aniruddh Patel, and my sister, Lilia

Burtonpatel, have all given me support, encouragement, and (arguably most importantly)
food. My gratitude for them is immeasurable.
My gratitude towards my friends is also without limit. In particular, and in no or-

der, Liam Strand, Annika Tanner, Max Stein, Cecelia Crumlish, and Charlie Bohnsack
all showed specific interest in the work and encouraged me as I moved forward. Rachael
Clawson was subjected to much rubber-ducking, and endured valiantly. Aliénor Rice and
Marie Kazibwe were as steadfast thesis buddies as I could ever hope for. Jasper Geer, my
PL partner in crime, was always one of my favorite people to talk to about my thesis. His
pursuits in research inspire mine.
Skylar Gilfeather, my unbelievable friend. Yours is support that goes beyond words;

care, food, silent and spoken friendship, late night rides to anywhere, laughs and tears are
some that can try to capture it. I am so, so grateful for how ceaselessly you’ve encouraged
me on this journey. Every one of your friends is lucky to have you in their life, and I am
blessed that you are such a core part of mine.
Anna Quirós, I am writing these words as you sleep behind me. Your support and love

have been immeasurable. I will always be grateful to you for this year increíble. I could
not have smiled through it all without you.
Thank you all.

REFERENCES
Sergio Antoy andMichael Hanus. Functional logic programming. Communications of the ACM, 53(4):74–85,

2010.

An Alternative to Pattern Matching, Inspired by Verse 45

Lennart Augustsson. Compiling pattern matching. In Conference on Functional Programming Languages
and Computer Architecture, pages 368–381. Springer, 1985.

Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers,
Guy L Steele Jr, and Tim Sweeney. The verse calculus: A core calculus for deterministic functional
logic programming. Proceedings of the ACM on Programming Languages, 7(ICFP):417–447, 2023.

Jonas Barklund and Robert Virding. Erlang 4.7. 3 reference manual draft (0.7). Ericsson AB, page 79, 1999.
Marianne Baudinet and David MacQueen. Tree pattern matching for ML. Available from David MacQueen,

AT&T Bell Laboratories, 600 Mountain Avenue, Murray, Hill, NJ 07974, 1986.
FWarren Burton and Robert D Cameron. Pattern matching with abstract data types1. Journal of Functional

Programming, 3(2):171–190, 1993.
Alonzo Church. The calculi of lambda-conversion. Princeton University Press, 1985.
KL Clark. An introduction to logic programming. Introductory Readings in Expert Systems, ed. D. Michie,

pages 93–112, 1982.
Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.
Martin Erwig and Simon Peyton Jones. Pattern guards and transformational patterns. Electronic Notes in

Theoretical Computer Science, 41(1):3, 2001.
Michael Hanus. Functional logic programming: From theory to curry. Programming Logics: Essays in

Memory of Harald Ganzinger, pages 123–168, 2013.
Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.
Wen Kokke, Jeremy G Siek, and Philip Wadler. Programming language foundations in agda. Science of

Computer Programming, 194:102440, 2020.
Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, KC Sivaramakrishnan, and

Jérôme Vouillon. The ocaml system release 5.1: Documentation and user’s manual, 2023.
Barbara Liskov and JohnGuttag. Abstraction and Specification in ProgramDevelopment. MIT Press/McGraw-

Hill, Cambridge, MA, 1986.
LucMaranget. Compiling patternmatching to good decision trees. In Proceedings of the 2008 ACM SIGPLAN

workshop on ML, pages 35–46, 2008.
Simon Marlow et al. Haskell 2010 language report: Chapter 3. 2010. URL https://www.haskell.org/

onlinereport/haskell2010/.
Pedro Palao Gostanza, Ricardo Pena, and Manuel Núnez. A new look at pattern matching in abstract data

types. ACM SIGPLAN Notices, 31(6):110–121, 1996.
Simon Peyton-Jones. Verification in verse, April 2024.
Norman Ramsey. Programming Languages: Build, Prove, and Compare. Cambridge University Press, 2022.
J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41, jan 1965.

ISSN 0004-5411. doi: 10.1145/321250.321253. URL https://doi.org/10.1145/321250.321253.
Kevin Scott and Norman Ramsey. When do match-compilation heuristics matter? Technical Report CS-

2000-13, Department of Computer Science, University of Virginia, May 2000.

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/321250.321253

46 Burtonpatel

Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny
Orwick, Daniel Quirk, Chris Smith, et al. The f# 2.0 language specification. Microsoft, August, 2010.

The Elixir Team. Elixir documentation. URL https://hexdocs.pm/elixir/index.html.
Philip Wadler. How to replace failure by a list of successes a method for exception handling, backtracking,

and pattern matching in lazy functional languages. In Conference on Functional Programming Languages
and Computer Architecture, pages 113–128. Springer, 1985.

Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 307–313, 1987.

École Polytechnique Fédérale. Pattern matching - the scala programming language. https://docs.scala-
lang.org/tour/pattern-matching.html.

A IS 𝑉 − A TRUE SUBSET OF VC?

𝑉 − certainly appears to relate to VC semantically. If they are formally related, 𝑉 − may
inform programming in VC, which could help new Verse programmers learn the lan-
guage if they are familiar with more traditional decision-making constructs like if-fi. By
starting with 𝑉 −, they could move from subset to full set as they learn the full Verse
language.
Translating if-fi and choice in 𝑉 − to one and choice in VC is likely a sufficient em-

bedding. Formalizing this translation and, more importantly, proving that my semantics
of 𝑉 − are consistent with Augutsson et al.’s VC is an excellent goal for future work.

https://hexdocs.pm/elixir/index.html
https://docs.scala-lang.org/tour/pattern-matching.html
https://docs.scala-lang.org/tour/pattern-matching.html

An Alternative to Pattern Matching, Inspired by Verse 47

B FORMAL DEFINITIONS OF ALL LANGUAGES

Syntactic Forms Cases
𝑃 : Programs {𝑑}
𝑑 : Definitions val 𝑥 = 𝑒

𝑣 : Values 𝐾{𝑣 }
𝜆𝑥 . 𝑒

𝑒 : Expressions 𝑣

𝑥,𝑦, 𝑧

𝐾{𝑒}
𝜆𝑥 . 𝑒

𝑒1 𝑒2

if 𝐺 fi
𝑡

𝐺 : Guarded Expressions [∃ 𝑥 .] 𝑔 → 𝑒

𝑔 : Guards 𝑥 = 𝑒

𝑒

𝑔 𝑔 ′

𝑡 : Decision Trees test 𝑥 {𝐾𝑖/𝑦𝑖 ⇒ 𝑡} [𝑒𝑙𝑠𝑒 𝑡]
𝑒

∃ 𝑥 . 𝑡
let 𝑥 = 𝑒 in 𝑡 [; unless fail ⇒ 𝑡]
if 𝑥 === 𝑒 then 𝑡 else 𝑡

fail

Table 3. Abstract Syntax of𝑉 − and 𝐷 . Forms in black are present in both languages, forms in red
are specific to 𝑉 − , and forms in blue are specific to 𝐷 .

B.1 Rules (Big-step Operational Semantics) for𝑈 , shared by 𝑉 − and 𝐷

B.1.1 Judgement forms for 𝑈 . In both 𝑉 − and 𝐷 , an expression evaluates to produce a
single result. A result is either a single value 𝑣 or fail.

48 Burtonpatel

⟨𝜌, 𝑒⟩ ⇓ 𝑟 (Eval)

B.2 Evaluating general expressions in𝑈

Here, I show all the rules which are shared by 𝑉 − and 𝐷 under𝑈 .

(Eval-Vcon)
⟨𝜌, 𝑒𝑖⟩ ⇓ 𝑣𝑖 1 ≤ 𝑖 ≤ 𝑛

⟨𝜌, 𝐾 (𝑒1, . . . 𝑒𝑛)⟩ ⇓ 𝐾 (𝑣1, . . . 𝑣𝑖)

∃𝑒𝑖 . 1 ≤ 𝑖 ≤ 𝑛 : ⟨𝜌, 𝑒𝑖⟩ ⇓ fail

⟨𝜌, 𝐾 (𝑒1, . . . 𝑒𝑛)⟩ ⇓ fail
(Eval-Vcon-Fail)

(Eval-Name)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣

⟨𝜌, 𝑥⟩ ⇓ 𝑣 ⟨𝜌, 𝜆𝑥 .𝑒⟩ ⇓ L𝜆𝑥 .𝑒, 𝜌M (Eval-LambdaDecl)

(Eval-Funapp)

⟨𝜌, 𝑒1⟩ ⇓ L𝜆𝑥.𝑒, 𝜌′M
⟨𝜌, 𝑒2⟩ ⇓ 𝑣

⟨(𝜌 + 𝜌′){𝑥 ↦→ 𝑣}, 𝑒⟩ ⇓ 𝑟

⟨𝜌, 𝑒1 𝑒2⟩ ⇓ 𝑟

⟨𝜌, 𝑒1⟩ ⇓ L𝜆𝑥.𝑒, 𝜌′M
⟨𝜌, 𝑒2⟩ ⇓ fail

⟨𝜌, 𝑒1 𝑒2⟩ ⇓ fail
(Eval-Funapp-Fail)

(Eval-LiteRal)
⟨𝜌, 𝑣⟩ ⇓ 𝑣

B.3 Rules (Big-step Operational Semantics) specific to 𝑉 −

These judgement forms and rules are specific to 𝑉 −.

B.3.1 Judgement forms for 𝑉 −.

𝜌 ⊢ 𝑔 ↣ 𝜌′ (GuaRd-Refine)

𝜌 ⊢ 𝑔 ↣ † (GuaRd-Reject)

An Alternative to Pattern Matching, Inspired by Verse 49

B.3.2 Choosing and solving a guard.

(Solve-GuaRd-Refine)
𝜌 ⊢ 𝑔 ↣ 𝜌′ 𝜌′ ⊢ 𝑔 · 𝑔 ′ ↣ 𝑠

𝜌 ⊢ 𝑔 · 𝑔 · 𝑔 ′ ↣ 𝑠

(Solve-GuaRd-Reject)
𝜌 ⊢ 𝑔 ↣ †

𝜌 ⊢ 𝑔 · 𝑔 · 𝑔 ′ ↣ †

B.3.3 Properties of guards.

(Multi-GuaRd-Commut)
𝜌 ⊢ 𝑔 · 𝑔1 · 𝑔2 · 𝑔 ′ ↣ 𝑠

𝜌 ⊢ 𝑔 · 𝑔2 · 𝑔1 · 𝑔 ′ ↣ 𝑠

B.3.4 Desugaring of Complex Equations.

(DesugaR-EqExps)

𝑥 fresh
𝜌{𝑥 ↦→ ⊥};T ⊢ 𝑔 ⇓ 𝑠

𝜌 ⊢ 𝑔 · 𝑒1 = 𝑒2 · 𝑔 ′ ↣ 𝑠

B.3.5 Refinement with different types of guards.

(GuaRd-NameExp-Bot)

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = ⊥

𝜌 ⊢ 𝑥 = 𝑒 ↣ 𝜌{𝑥 ↦→ 𝑣}
(GuaRd-NameExp-Eq)

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣

𝜌 ⊢ 𝑥 = 𝑒 ↣ 𝜌

𝑥 ∈ dom 𝜌

⟨𝜌, 𝑒⟩ ⇓ 𝑣
𝜌 (𝑥) = 𝑣′

𝑣 ≠ 𝑣′

𝜌 ⊢ 𝑥 = 𝑒 ↣ †
(GuaRd-NameExp-Fail)

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣, 𝜌 (𝑦) = ⊥

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑦 ↦→ 𝑣}
(GuaRd-Names-Bot-Succ)

(GuaRd-Names-Bot-Succ-Rev)

𝑥, 𝑦 ∈ dom 𝜌

𝜌 (𝑥) = ⊥, 𝜌 (𝑦) = 𝑣

𝜌 ⊢ 𝑥 = 𝑦 ↣ 𝜌{𝑥 ↦→ 𝑣}

50 Burtonpatel

(GuaRd-Vcon-Succ)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝐾 𝑣1, . . . 𝑣𝑛

𝜌 ⊢ 𝑦1 = 𝑒1; · · · · · 𝑦𝑛 = 𝑒𝑛 ↣ 𝑠, where
𝑦𝑖 fresh, 𝜌 (𝑦𝑖) = 𝑣𝑖 1 ≤ 𝑖 ≤ 𝑛

𝜌 ⊢ 𝑥 = 𝐾 𝑒1 . . . 𝑒𝑛 ↣ 𝑠

(GuaRd-Vcon-Fail)

𝑥 ∈ dom 𝜌

𝜌 (𝑥) = 𝑣
𝑣 does not have the form 𝐾 [𝑣′1, . . . 𝑣′𝑛]

𝜌 ⊢ 𝑥 = 𝐾 𝑒1, . . . 𝑒𝑛 ↣ †

(GuaRd-Expseq-Succ)
⟨𝜌, 𝑒⟩ ⇓ 𝑣

𝜌 ⊢ 𝑒 ↣ 𝜌

⟨𝜌, 𝑒⟩ ⇓ fail

𝜌 ⊢ 𝑒 ↣ †
(GuaRd-Expseq-Fail)

(GuaRd-Choice-FiRst)
𝜌 ⊢ 𝑔 ↣ 𝜌′

𝜌 ⊢ 𝑔 𝑔′ ↣ 𝜌′
(GuaRd-Choice-Second)

𝜌 ⊢ 𝑔 ↣ † 𝜌 ⊢ 𝑔′ ↣ 𝑠

𝜌 ⊢ 𝑔 𝑔′ ↣ 𝑠

B.3.6 Evaluating if-fi.

(Eval-IfFi-Fail)
⟨𝜌, if fi⟩ ⇓ fail

𝜌′ = 𝜌{𝑥1 ↦→ ⊥ . . . 𝑥𝑛 ↦→ ⊥}
𝜌′ ⊢ 𝑔 ↣ 𝜌′′

⟨𝜌′′, 𝑒⟩ ⇓ 𝑟

⟨𝜌, if ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒 ▯;𝐺 fi⟩ ⇓ 𝑟
(Eval-IfFi-Success)

(Eval-IfFi-Reject)

𝜌′ = 𝜌{𝑥1 ↦→ ⊥ . . . 𝑥𝑛 ↦→ ⊥}
𝜌′ ⊢ 𝑔 ↣ †

⟨𝜌, if 𝐺 fi⟩ ⇓ 𝑟

⟨𝜌, if ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒 ▯ 𝐺 fi⟩ ⇓ 𝑟

An Alternative to Pattern Matching, Inspired by Verse 51

B.4 Rules (Big-step Operational Semantics) for 𝐷:

B.4.1 Evaluating Decision Trees.

(Eval-Test-Fail)
𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, []) ⇓ fail

(Eval-Test-Succeed)

𝜌 (𝑥) = 𝐾 𝑣 𝑙𝑒𝑛 𝑣 = 𝑖

𝜌 ⊢ 𝑡 ⇓ 𝑟

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, (𝐾 𝑦, 𝑡) · 𝑡𝑠) ⇓ 𝑟

(Eval-Test-RecuRse)

𝜌 (𝑥) = 𝑣
𝑣 does not have the form 𝐾 𝑣 s.t. 𝑙𝑒𝑛 𝑣 = 𝑙𝑒𝑛 𝑦

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, 𝑡𝑠), 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟 ⇓ 𝑟

𝜌 ⊢ 𝑡𝑒𝑠𝑡 (𝑥, (𝐾 𝑦, 𝑡) · 𝑡𝑠) ⇓ 𝑟

(If-FiRst)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌 (𝑥) = 𝑣
𝜌 ⊢ 𝑡1 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

(If-Second)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌 (𝑥) ≠ 𝑣
𝜌 ⊢ 𝑡2 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

(If-Unless)

𝜌 ⊢ 𝑒 ⇓ fail
𝜌 ⊢ 𝑡3 ⇓ 𝑟

𝜌 ⊢ 𝑖 𝑓 𝑥 = 𝑒 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3 ⇓ 𝑟

52 Burtonpatel

(Let-Succeed)

𝜌 ⊢ 𝑒 ⇓ 𝑣
𝜌{𝑥 ↦→ 𝑣} ⊢ 𝑡1 ⇓ 𝑟

𝜌 ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2 ⇓ 𝑟

(Let-Unless)

𝜌 ⊢ 𝑒 ⇓ fail
𝜌 ⊢ 𝑡2 ⇓ 𝑟

𝜌 ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2 ⇓ 𝑟

(Fail)
𝜌 ⊢ fail ⇓ fail

(Exists)
𝜌{𝑥 ↦→ ⊥} ⊢ 𝑡 ⇓ 𝑟

𝜌 ⊢ ∃ 𝑥 . 𝑡 ⇓ 𝑟

B.5 Full Big-step rules for compile, with no descriptions

C ⊢ if 𝐺 fi ↩→→ 𝑒 (Compile)

B.6 Rules (Big-step Translation) for compiling if-fi

These rules in a nondeterministic order by the compiler.

(Exists)
C{𝑥1 ↦→ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛} ⊢ if 𝐺 ▯ ∃ . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ ∃ 𝑥1 . . . 𝑥𝑛 . 𝑔 → 𝑒′ ▯ 𝐺 ′ fi ↩→→ 𝑒

(Fail)
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; fail; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

(Match)
C ⊢ if 𝐺 ▯ → 𝑒 ▯ 𝐺 ′ fi ↩→→ 𝑒

An Alternative to Pattern Matching, Inspired by Verse 53

(Test)

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛
C + {𝑦𝑖 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒

[
𝐾𝑖 𝑦𝑖/𝑥

]
↩→→ 𝑒𝑖

𝑡 =
∑
𝑖

𝐾𝑖 𝑦𝑖 ⇒ 𝑒𝑖

𝑒0 = 𝑒 [𝐾0/𝑥] 𝐾0 does not appear in 𝑒

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑡𝑒𝑠𝑡 (𝑥, 𝑡 , 𝑒0)

(Elim-Vcon)

𝑒′ does not have the form 𝐾 𝑒′[1] . . . 𝑒′[𝑛]
C ⊢ if 𝐺 ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝑒′ = 𝐾 𝑒1 . . . 𝑒𝑛; 𝑔
′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝑒1 = 𝑒1′; . . . ; 𝑒𝑛 = 𝑒𝑛′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒

C ⊢ if 𝐺 ▯ 𝑔; 𝐾 𝑒1 . . . 𝑒𝑛 = 𝐾 𝑒1
′ . . . 𝑒𝑛

′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑒
(Expand-Vcon)

𝜌 (𝑥) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒 : 𝑘𝑛𝑜𝑤𝑛

C + {𝑥 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒′ [𝑥/𝑒] ↩→→ 𝑡1

C ⊢ 𝑒′ [fail/𝑒] ↩→→ 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑡1 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡2
(Let-Unless)

𝜌 (𝑥) = 𝑘𝑛𝑜𝑤𝑛 C ⊢ 𝑒′ : 𝑘𝑛𝑜𝑤𝑛

C ⊢ 𝑒
[
𝑥/𝑒′

]
↩→→ 𝑡1

C + {𝑦 ↦→ 𝑘𝑛𝑜𝑤𝑛} ⊢ 𝑒
[
fail/𝑥 = 𝑒′

] [
𝑦/𝑒′

]
↩→→ 𝑡2 𝑦 fresh

C ⊢ 𝑒
[
fail/𝑒′

]
↩→→ 𝑡3

𝑡𝑖 𝑓 = 𝑖 𝑓 𝑥 = 𝑦 𝑡ℎ𝑒𝑛 𝑡1 𝑒𝑙𝑠𝑒 𝑡2

C ⊢ 𝑒 as if 𝐺 ▯ 𝑔; 𝑥 = 𝑒′; 𝑔 ′ → 𝑒′′ ▯ 𝐺 ′ fi ↩→→ 𝑙𝑒𝑡 𝑦 = 𝑒′ 𝑖𝑛 𝑡𝑖 𝑓 𝑢𝑛𝑙𝑒𝑠𝑠 fail ⇒ 𝑡3
(Let-If)

	Abstract
	Contents
	1 Introduction
	2 Pattern Matching and its Extensions
	2.1 Popular extensions to pattern matching

	3 Equations
	3.1 VC has a challenging cost model

	4 A compromise
	4.1 Two languages of a kind
	4.2 Introducing V-
	4.3 Programming in V-
	4.4 Formal Semantics of V-
	4.5 Notable rules in the V- semantics
	4.6 Rules (Big-step Operational Semantics) for U, shared by V- and D
	4.7 Evaluating general expressions in U
	4.8 Rules (Big-step Operational Semantics) specific to V-

	5 V- can be compiled to a decision tree
	5.1 Introducing D
	5.2 D is a generalization of Maranget's trees
	5.3 Rules (Big-step Operational Semantics) for D:
	5.4 The D algorithm: V- D
	5.5 Big-step rules for compile
	5.6 Rules (Big-step Translation) for compiling if-fi
	5.7 Reduction Strategies
	5.8 Full Big-step rules for compile, with no descriptions
	5.9 Translation from V- to D preserves semantics

	6 Implementations
	7 Related and Future Work
	8 Discussion: The design of V-
	8.1 Forms in VC and V-
	8.2 Choice in V- vs. VC

	9 Conclusion
	10 Acknowledgements
	References
	A Is V- a true subset of VC?
	B Formal Definitions of all languages
	B.1 Rules (Big-step Operational Semantics) for U, shared by V- and D
	B.2 Evaluating general expressions in U
	B.3 Rules (Big-step Operational Semantics) specific to V-
	B.4 Rules (Big-step Operational Semantics) for D:
	B.5 Full Big-step rules for compile, with no descriptions
	B.6 Rules (Big-step Translation) for compiling if-fi

